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Complete characterization of ultrafast optical fields
by phase-preserving nonlinear autocorrelation
Alexander Gliserin 1,2,3✉, Soo Hoon Chew1,2,3, Seungchul Kim 1,2✉ and Dong Eon Kim3,4✉

Abstract
Nonlinear autocorrelation was one of the earliest and simplest tools for obtaining partial temporal information about
an ultrashort optical pulse by gating it with itself. However, since the spectral phase is lost in a conventional
autocorrelation measurement, it is insufficient for a full characterization of an ultrafast electric field, requiring additional
spectral information for phase retrieval. Here, we show that introducing an intensity asymmetry into a conventional
nonlinear interferometric autocorrelation preserves some spectral phase information within the autocorrelation signal,
which enables the full reconstruction of the original electric field, including the direction of time, using only a
spectrally integrating detector. We call this technique Phase-Enabled Nonlinear Gating with Unbalanced Intensity
(PENGUIN). It can be applied to almost any existing nonlinear interferometric autocorrelator, making it capable of
complete optical field characterization and thus providing an inexpensive and less complex alternative to methods
relying on spectral measurements, such as frequency-resolved optical gating (FROG) or spectral phase interferometry
for direct electric-field reconstruction (SPIDER). More importantly, PENGUIN allows the precise characterization of
ultrafast fields in non-radiative (e.g., plasmonic) nonlinear optical interactions where spectral information is
inaccessible. We demonstrate this novel technique through simulations and experimentally by measuring the electric
field of ~6-fs laser pulses from a Ti:sapphire oscillator. The results are validated by comparison with the well-established
FROG method.

Introduction
The rapid advancement of ultrafast laser sources over

the past decades1,2 has enabled the direct observation
and control of the fastest light-matter interactions on
their natural time scales leading to a wide variety of sci-
entific and industrial applications3,4. Lasers producing
few- and single-cycle optical pulses are readily avail-
able5–9, and even sub-cycle optical transients have been
achieved using well-controlled synthesized electric
fields10,11. The precise characterization of these ultrafast
and broadband electric fields is crucial for most

applications in science and technology; yet, a direct
measurement of the shortest optical pulses is technically
challenging, since it requires an even shorter sampling
process, such as attosecond streaking with extreme
ultraviolet pulses2,12–15 or tunneling ionization16, which is
limited to strong optical fields.
Historically, short optical pulses were first measured

indirectly via nonlinear autocorrelation17–21, yielding only
rough pulse shape parameters. The fringe-resolved or
interferometric autocorrelation (IAC) variant, first
reported by Diels et al.22,23, contains some information
about the chirp24–26 and enabled for the first time the full
reconstruction of the original optical field in many prac-
tical cases5,27–30 except for the direction of time. Unba-
lanced autocorrelation, although considered detrimental
at first31, has been shown to mitigate this ambiguity,
either by modulating the phase32 or the amplitude33 in
one of the interferometer’s arms. However, none of these
methods preserve (or make use of) any spectral phase
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information in the autocorrelation signal itself, and
therefore require the independently measured funda-
mental spectrum of the pulse for phase retrieval.
Frequency-resolved optical gating (FROG)34,35 enables

the full retrieval of an arbitrary optical field from a single
measurement by combining a nonlinear autocorrelation
with spectroscopy. This technique measures the optical
spectrum of the nonlinear autocorrelation signal for every
delay step, which provides a two-dimensional spectro-
gram. Although the spectral phase is lost in the FROG
spectrogram just as in the case of a spectrally integrated
nonlinear autocorrelation, a unique solution for the
electric field is usually guaranteed in a two-dimensional
phase retrieval problem except for trivial ambiguities
such as the constant carrier-envelope phase (CEP) or the
direction of time in certain configurations35. The more
recent interferometric FROG variants36,37, i.e., the spec-
trally resolved extension of the IAC, are suitable for the
shortest optical pulses, since they eliminate the geometric
broadening present in a conventional non-collinear
FROG arrangement; however, they require high sam-
pling accuracy and a more complex field retrieval pro-
cess37–39. Other notable characterization techniques
include streaking-type time lens methods for direct
temporal measurements, albeit limited to picosecond
pulses40, dispersion scanning (d-scan)41,42, and the widely
used spectral phase interferometry for direct electric-field
reconstruction (SPIDER)43,44. While d-scan yields a
spectrogram similar to FROG and requires an iterative
retrieval algorithm, SPIDER allows a direct spectral phase
measurement but has a significantly more complex
optical setup for sum-frequency generation between the
pulse itself and a quasi-monochromatic reference at two
different frequencies.
All the aforementioned methods require spectroscopy

of the nonlinear interaction or knowledge of the spec-
tral intensity of the pulse itself, or both. While spec-
troscopy is a well-established optical technique, the
capability of using a spectrally integrating detector is
advantageous for applications involving very weak
optical signals or requiring a very high dynamic range
offered, e.g., by photomultipliers. A large portion of the
optical signal is inherently lost at the input slit and
dispersive element of a monochromator, and the pixe-
lated sensors typically used in spectrometers offer only
a limited sensitivity and signal gain. This is exacerbated
for overdetermined characterization techniques based
on two-dimensional spectrograms, such as FROG and
d-scan, which provide signal redundancy for the field
retrieval but require on the order of N times more
signal collection (N being the number of delay points)
than for a one-dimensional autocorrelation to achieve a
comparable signal-to-noise ratio. Furthermore, spec-
trally resolved optical detection is only available if the

underlying nonlinear interaction produces detectable
light. Non-radiative nonlinear interactions of ultrafast
electric fields are therefore inaccessible by spectro-
scopic characterization techniques. For example, opti-
cally induced ultrafast plasmonic near-fields at metallic
nanostructures produce low-energy photoelectrons via
nonlinear photoemission45–47, which is an incoherent
process and therefore does not preserve sufficient
spectral information about the plasmonic near-fields in
the kinetic energy spectrum of the photoelectrons for
field retrieval with FROG or other spectroscopic
methods. A spectrally integrated nonlinear IAC signal
of the plasmonic near-fields, on the other hand, is easily
obtained by recording the nonlinear photoemission rate
as a function of the autocorrelation delay;47–49 however,
the extraction of the underlying plasmonic electric
fields from such a measurement has been impossible
because of inaccessible spectral information or required
sub-cycle sampling pulses50,51.
Here, we propose a novel approach for complete and

inexpensive characterization of ultrafast optical electric
fields without requiring a spectroscopic measurement,
which employs unbalanced-intensity nonlinear IAC with
a spectrally integrating detector (e.g., a photodiode). The
intensity asymmetry is achieved via a neutral-density
(ND) filter in one of the interferometer’s arms, which
breaks the time-reversal symmetry of a balanced IAC,
thus preserving non-trivial spectral phase information of
the optical field. This allows retrieval of the original field
from such an unbalanced-intensity IAC signal with a
self-consistent iterative algorithm using a Fourier rela-
tion. We call this technique Phase-Enabled Nonlinear
Gating with Unbalanced Intensity (PENGUIN). Unlike
previous implementations of the unbalanced IAC32,33,
PENGUIN utilizes the spectral phase information con-
tained in the IAC signal and therefore does not require
the fundamental spectrum for field retrieval. The feasi-
bility and limitations of this novel technique are dis-
cussed based on numerical simulations. In addition, we
experimentally demonstrate the complete field retrieval
of few-cycle laser pulses using PENGUIN and validate
the results by comparison with the well-established
FROG method.

Results
Unbalanced-intensity interferometric autocorrelation
Figure 1 shows a typical nonlinear IAC setup based on

a dispersion-minimized Mach-Zehnder interferometer,
where an optical pulse (fundamental central frequency
ω0) is split into two identical copies with a complex
electric field E(t). The setup is modified by attenuating
the pulse in one of the arms via a variable ND filter such
that its field amplitude is scaled by a balance factor s
(s ≤ 1). Note that the group delay dispersion (GDD)
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introduced by the ND filter needs to be matched in the
other arm, for example via a fused silica plate. The two
pulses interfere with each other since they have iden-
tical polarization and are then collinearly focused into
an nth-order nonlinear medium for parametric nth-
order harmonic generation (nω0), e.g., type-I second-
order harmonic generation (SHG), which is spectrally
separated from the fundamental via short-pass filtering
and recorded by a slow spectrally integrating photo-
detector. The unbalanced-intensity nonlinear (nth-
order) IAC signal on the detector as a function of the
optical delay τ is given by

IIAC τð Þ ¼
Z þ1

�1
sE tð Þ þ E t � τð Þð Þnj j2dt

¼
Z þ1

�1

Xn
k¼0

n

k

� �
skEk tð ÞEn�k t � τð Þ

�����
�����
2

dt

ð1Þ

The nth-order binomial expansion in Eq. (1) results in
(n+ 1)2 terms of mixed powers of the delayed and non-
delayed electric field and their complex conjugates after
the magnitude-squared operation. Therefore, the non-
linear IAC signal is composed of cross-correlations
between different powers of the field weighted by the
binomial coefficients and powers of s. Using the con-
volution theorem, each cross-correlation integral in the
time domain can be expressed as a product of the

respective field powers in the frequency domain:

IIAC ωð Þ ¼ Pn
k¼0

I0;k ωð Þ þ Pn
m¼1

Pn�m

k¼0
Im;k ωð Þ þ Im;k �ωð Þ
h i

;
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k

� �
n

k þm

� �
s2kþmF Em tð Þ Ek tð Þ�� ��2n o

F Em tð Þ En�k�m tð Þj j2
n o

ð2Þ
where F denotes a Fourier transform from the time
domain into the frequency domain, and the top bar
denotes complex conjugation. Note that in Eq. (2), the
cross-correlation components, Im;k ωð Þ, constituting the
IAC signal in the frequency domain are grouped by
their harmonic order m (representing both positive- and
negative-frequency orders) from DC (m= 0) to the nth-
order harmonic (m= n), and the index k denotes
different components at the same harmonic order. Each
of these components directly corresponds to one time-
domain integral term, Im;k τð Þ, in Eq. (1). Negative-
frequency components for m > 0 are reversed replicas of
their positive counterparts with a centrosymmetric
phase and can therefore be ignored in the subsequent
discussion. For a balanced IAC (s= 1), it is evident from
Eq. (2) that all cross-correlation components at any
given harmonic order m are either magnitude-squared
quantities of the form F xf gF xf g or pairwise complex
conjugates of each other, resulting in a purely real IAC
spectrum with a flat spectral phase. This loss of spectral
phase information is inherent to any type of balanced
autocorrelation. In the time domain, this corresponds to
time-symmetric or pairwise time-reversed cross-correla-
tion components, respectively, which add up to an
overall time-symmetric IAC signal. However, using two
pulses with unbalanced intensity (0 < s < 1) breaks the
symmetry of the pairwise time-reversed cross-correla-
tion components and thus retains spectral phase
information within the resulting IAC signal, which
enables field retrieval.
Let us first consider the lowest nonlinear order, n= 2,

since it has the fewest cross-correlation components and
the simplest experimental implementation. Here, Eqs. (1)
and (2) contain only four non-trivial cross-correlation
components (I0;1, I1;0, I1;1, and I2;0; others are DC con-
stants or at negative frequencies), which are composed of
different or mixed field powers, as illustrated in the flow
chart in Fig. 2a. An example is shown in Fig. 2b, c in the
time and frequency domains, respectively, for n= 2 and a
balance factor of s= 0.5 using the electric field of a
typical few-cycle optical pulse (red; left panels) with a
realistic spectral magnitude (taken from a measurement)
and a synthetic 4th-order polynomial spectral phase close
to the Fourier-transform limit (time-bandwidth product

�

E(t )

sE(t )

BS

BS

ND

Filter

�/2

Delay
�(n)

Detector

Pulse

FS

�0

�0

n�0

n�0 + �0

Fig. 1 Schematic setup for unbalanced-intensity nonlinear IAC.
A collinear Mach–Zehnder interferometer is modified by inserting
a variable neutral-density (ND) filter into one arm to adjust its
relative field amplitude before nth-order harmonic generation. The
residual fundamental (ω0) is removed via a short-pass filter and
only the harmonic radiation (nω0) is recorded as a function of the
delay τ by a spectrally integrating detector such as a photodiode.
BS beam splitter, FS fused silica plate for dispersion matching, χ(n):
nonlinear medium
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of ~1.8). The DC (I0;1) and 2nd-order harmonic (I2;0)
peaks of the IAC contain only one cross-correlation
component each (ignoring the delta-like DC constants,
I0;0 and I0;2), resulting in magnitude-squared quantities
with flat spectral phases (blue; middle panels). In con-
trast, the two fundamental (ω0) cross-correlation com-
ponents, I1;0 and I1;1 (green, brown; middle panels),
between the fundamental field, E tð Þ (red; left panels), and
the gating field, EG tð Þ ¼ E tð Þ EðtÞj j2 in this example
(purple; left panels), exhibit spectral phases of opposite
sign with respect to each other but similar in shape to
the phase of the fundamental field. These two compo-
nents would be complex conjugates in a balanced IAC
(s= 1) and thus their phases would cancel out after
summation. However, for s < 1, their spectral magnitudes
differ by a factor of s2 (or by s2n−2 for any n) and a non-
trivial spectral phase is retained in the IAC signal (right
panel in Fig. 2c). Since knowing one of these two
fundamental-frequency components and the balance
factor s defines the conjugate component, we only con-
sider the component scaled by the lowest power of s, I1;0,
which is given by Eq. (2) for any nonlinear order n as

I1;0 ωð Þ ¼ nsF E tð Þf gF E tð Þ En�1 tð Þj j2� �
¼ nsF E tð Þf gF EG 1;0ð Þ tð Þ

� � ð3Þ

with EG 1;0ð Þ tð Þ ¼ E tð Þ En�1 tð Þj j2 being the nth-order gating
field for the I1;0 component. It is worth noting that this
fundamental cross-correlation component contains the
most information about the electric field, since it

constitutes a cross-correlation between the fundamental
field itself and some higher-order gating field, while all
other components are cross-correlations between higher
powers of the field. It is also intuitive why the spectral
shape and phase of the I1;0 signal resemble those of the
fundamental field for short optical pulses close to the
Fourier-transform limit: Since the gating field is signifi-
cantly shorter in the time domain than the fundamental
field (compare the red and purple curves in Fig. 2b, left
panel), their cross-correlation (i.e., frequency-domain
product) is dominated by the spectral shape and phase of
the fundamental field. In fact, for a high enough nonlinear
order n, the gating field can become delta-like with respect
to the fundamental field, resulting in a I1;0 signal that
accurately reproduces the original field according to
Eq. (3). In addition, using a very small balance factor s
close to zero suppresses all cross-correlation components
other than the I1;0 signal itself and a constant background
(I0;0) at the expense of reduced signal contrast. The IAC
then directly reproduces the electric field except for a
constant offset. Park et al. used this “perturbative” (low s)
strong-field (high n) limit to directly obtain the electric
field from a nonlinear unbalanced-intensity IAC measure-
ment without the need for a retrieval algorithm16.
However, their approach requires very high nonlinear
orders n, which are only achievable with strong-field effects
such as tunneling ionization, and offers only a low dynamic
range because of the use of very small balance factors
(s < 0.03). In contrast, our method works for all n ≥ 2 and
non-perturbative balance factors close to 1, making it
feasible for use with any typical IAC setup.

b
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Fig. 2 Concept of the unbalanced-intensity nonlinear IAC for n= 2. a Flow chart of the (mixed) field powers contributing to the different cross-
correlation components which constitute the IAC signal in the time domain according to Eq. (1) with harmonic indices as introduced in Eq. (2). The

star operator denotes cross-correlation: f ? gð Þ τð Þ ¼ R
f t � τð Þg tð Þdt. b Time-domain components of the IAC for n= 2 and s= 0.5 for an exemplary

few-cycle pulse (see text) depicting the fundamental and nonlinear field quantities (left panel), the cross-correlation components (middle panel), and
the resulting IAC signal (right panel). Only the real parts are shown. c Frequency-domain representation of b according to Eq. (2) showing spectral
magnitudes (solid lines) and phases (dotted lines)
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Field retrieval
In general, the Fourier relation in Eq. (3) between the

I1;0 signal and the fundamental electric field has no ana-
lytic solution. Therefore, the field retrieval is based on
iteratively improving an initial field guess to satisfy
Eq. (3). Although a variety of numerical optimization
algorithms are applicable to this problem, our approach
exploits the inherent relationship between the funda-
mental field and the gating field to optimize the field
guess by iteratively evaluating Eq. (3). This avoids the
need for a computationally expensive gradient-based
numerical optimization of a large parameter set. The
choice for the initial field guess is essentially unrestricted
(e.g., a Gaussian pulse with a flat phase is possible) as long
as it provides sufficient spectral bandwidth to support the
retrieved field. Since the fundamental peak of the IAC
resembles the spectral shape and phase of the original
electric field, it can be directly used as the initial guess,
E〈1〉(t), by spectral filtering:

E 1h i tð Þ ¼ F�1 IIAC ωð ÞF ωð Þf g ð4Þ

with F�1 denoting the inverse Fourier transform from the
frequency domain into the time domain and F(ω) being a
spectral filter around the fundamental (ω0) peak (dashed
gray line in Fig. 3a). Equation (4) provides a natural choice
for the initial guess, since it converges towards E tð Þ for
large n and small s. The field guess is updated at the
(i+ 1)th iteration by calculating the gating field using
the ith-iteration field guess and solving Eq. (3) for the
fundamental field:

E ih i
G 1;0ð Þ tð Þ ¼ E ih i tð Þ E ih i tð Þ� �n�1

��� ���2 ð5Þ

E iþ1h i tð Þ ¼ F�1 I1;0 ωð Þ
nsF E ih i

G 1;0ð Þ tð Þ
n o

8><
>:

9>=
>;q þ E ih i tð Þ 1� qð Þ

ð6Þ
where 0 < q ≤ 1 is a parameter controlling the rate of
convergence that needs to be adjusted to ensure
numerical stability depending on the choice of n and s.
The I1;0 signal is obtained from the IAC via Eq. (8) either
before the retrieval (for n= 2) or iteratively during the
retrieval (for n > 2). (See Materials and Methods.)
Essentially, the electric field is decorrelated from the I1;0
signal in Eq. (6) in the frequency domain by dividing out
the spectrum of the gating field, requiring it to have a
non-zero spectral magnitude over the entire fundamental
bandwidth, which is true for most practical optical pulses.
Figure 3a depicts the field retrieval at different iteration

steps based on Eqs. (4–6) in the frequency domain for a
few-cycle pulse using n= 2 and s= 0.5 (the field in this

example is the same as in Fig. 2b, c). A spectral filter
(dashed gray line) is used to obtain the initial field guess
according to Eq. (4) as well as the I1;0 signal (see Materials
and Methods) from the reference IAC (dark blue), with a
filter width chosen to minimize the retrieval error. The
retrieved field (green; right column) rapidly converges
towards the reference field (red) within only a few itera-
tions and also yields a perfect match between the refer-
ence (purple) and retrieved (blue) gating fields as well as
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Fig. 3 Field retrieval simulation. a Field retrieval of a few-cycle low-
dispersion pulse from its IAC for n= 2 and s= 0.5 shown after
different iteration steps i in the frequency domain. The left column
depicts the reference (dark blue) and retrieved (orange) IAC signals as
well as the spectral filter (dashed gray line) used to extract the I1,0
signal and initial field guess from the IAC. The right column shows the
reference (red) and retrieved (green) electric fields as well as the
reference (purple) and retrieved (blue) gating fields. Magnitudes are
shown as solid lines and phases as dotted lines; flat phase segments
outside the fundamental peak are not shown. b Retrieval attempt
from a balanced IAC (s= 1) shown after convergence for comparison.
Only the fundamental peak of the IAC is reproduced due to the lack of
spectral phase information, yielding a wrong field result. c Retrieval
convergence depicting the error quantities as defined in Eqs. (10–12).
The solid lines refer to the s= 0.5 case and the dotted lines to the
s= 1 case. The phase error is shown in radians, while the other errors
are dimensionless (but are all shown on the same scale)
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the reference (dark blue; left column) and retrieved
(orange) IACs. Since only two Fourier transforms in one
dimension are required per iteration step in the simplest
case (n= 2) according to Eq. (6), the algorithm is com-
putationally fast, and a few iterations are sufficient to
reach typical experimental accuracy. For example, one
iteration is completed in <1ms on a typical personal
computer for 1000 IAC data points, which allows online
diagnostics at video refresh rates. Figure 3b shows the
result of the retrieval algorithm applied to a balanced IAC
for comparison (s= 1, n= 2 and the same electric field as
in Fig. 3a) after convergence. Here, the I1;0 signal cannot
be directly extracted from the IAC signal via Eq. (8) before
the retrieval; instead, it is iteratively approximated during
the retrieval by subtracting the calculated I1;1 component
(using the current field guess) from the IAC at each
iteration. The lack of spectral phase information in the
IAC signal leads to an ambiguity in the retrieval, yielding a
wrong field solution which satisfies Eq. (3) and thus
matches the fundamental spectral peak of the IAC but
fails to reproduce its other harmonic peaks. In addition,
the convergence parameter in Eq. (6) had to be reduced to
q= 0.4 to avoid numerical instabilities, while the unba-
lanced case facilitates the highest rate of convergence
(q= 1). Figure 3c shows the time-domain IAC errors as
well as the intensity and phase errors of the electric field
(see Materials and Methods) for each iteration step. The
rapid convergence of the unbalanced case (s= 0.5, solid
lines) continues exponentially over many orders of mag-
nitude until it cuts off around the numerical precision
limit of the simulation (~10−16), signifying a near-perfect
decorrelation of the electric field from the IAC signal. The
balanced case (s= 1, dotted lines) converges almost
immediately but fails to significantly reduce the initial
error quantities (~10−3), since the wrong field solution is
retrieved. Notably, all error quantities show very similar
behavior, making the IAC error suitable for assessing
the convergence and quality of the field retrieval. This is
important for real-world applications of the PENGUIN
technique to unknown fields where only the IAC error
is accessible.
This simple retrieval method using only the I1;0 signal is

limited to low-dispersion pulses near the Fourier-
transform limit where the gating field is spectrally
broader than the fundamental field. For highly dispersed
pulses, this algorithm converges to a wrong solution
where the retrieved field only reproduces the funda-
mental peak of the IAC but not its other harmonics,
similar to the s= 1 case. This dispersion limit depends on
both the bandwidth as well as the spectral distribution of
the GDD of the pulse; hence, it cannot be universally
quantified by a maximum time-bandwidth product for
successful retrieval. For example, for the spectral mag-
nitude used in Fig. 3 and a purely linear chirp, i.e., a

constant GDD, the maximum acceptable time-bandwidth
product is ~1.6 (lower than that of the polynomial phase
example in Figs. 2 and 3), while it is ~10 for a pure
5th-order dispersion. We found that the dispersion
limit where the simple field retrieval method based on
Eqs. (4–6) starts to fail can be characterized by an inverse
power law relationship between the spectral bandwidth
and the amount of GDD (nonlinear spectral phase) with
the exponent being the dispersion order. This is shown in
detail for different spectral shapes in the Supplementary
Information (Section S1).
Further constraints are required to use the field retrieval

algorithm for pulses with larger GDD or time-bandwidth
products by including cross-correlation components at
different harmonic orders. This generalized multi-order
extension of the retrieval algorithm can increase the
practical dispersion limit by several times at the cost of
amplifying noise and systematic errors, since it uses cross-
correlation components between higher powers of the
electric field. A detailed discussion of the multi-order
retrieval algorithm and its performance can be found in
the Supplementary Information (Sections S2 and S3).

Retrieval robustness in the presence of noise
In order to assess the susceptibility of the PENGUIN

method to noise under realistic experimental conditions,
we apply additive and multiplicative noises to a noiseless
IAC trace calculated in the time domain via Eq. (1) using a
single noise parameter σ for simplicity:

~IσIAC τð Þ ¼ IIAC τð Þ 1þ Iσ´ τð Þ� �þ Imax
IAC 0ð ÞIσþ τð Þ ð7Þ

where Imax
IAC 0ð Þ ¼ Rþ1

�1 2E tð Þj j2ndt is the peak value of the
balanced version of the IAC signal (s = 1) at time-zero
according to Eq. (1). IσþðτÞ and Iσ´ ðτÞ denote statistically
independent Gaussian white noise signals centered
around zero for the additive and multiplicative parts,
respectively, with a standard deviation of σ. The additive
noise is scaled by the peak of the balanced version of the
IAC signal (s= 1) in order to model the loss of signal-to-
noise ratio due to the required attenuation of one of the
pulses (s < 1) for the PENGUIN field retrieval. There-
fore, the additive noise dominates for low-contrast IAC
signals using small balance factors s, while the additive
and multiplicative noises have equal amplitudes in the
s= 1 limit.
As an example, the retrieval of the same low-dispersion

pulse that was presented in Fig. 3 is shown in Fig. 4a–d in
the presence of strong noise (σ= 0.02) for n= 2 and
s= 0.5. The IAC with applied noise according to Eq. (7) is
depicted in Fig. 4a (dark blue) in the time domain toge-
ther with the retrieved IAC trace (orange) showing an
excellent match. Note that high-frequency noise compo-
nents are removed in the retrieved trace by the spectral
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filter used in the retrieval (dashed gray line in Fig. 4b).
Figure 4b, c show the reference (red) and retrieved (green)
electric fields in the frequency and time domains,
respectively. The short-period noise imparted onto the
retrieved spectrum results in low-amplitude, large-period
modulation of the time-domain signal, mostly outside the
main few-cycle pulse, thus the retrieval quality within the
pulse duration is excellent. The retrieval converges within
only a few iterations (see Fig. 4d) because of the noise
background, and the error values (see Materials and
Methods) are only slightly improved after the initial field
guess. This is because the initial guess, which is the fun-
damental component of the IAC itself, already matches
the retrieved field reasonably well given the noise

magnitude. Furthermore, the noise background is uni-
formly distributed over the entire 400-fs simulation range,
giving it a significant weight in the error calculation
compared to the few-cycle pulse duration.
The balance factor s has a crucial impact on the retrieval

quality in the presence of noise since it directly affects the
signal-to-noise ratio available in the experiment. A small
balance factor maximizes the spectral phase contrast
contained in the IAC by suppressing all cross-correlation
components other than I1;0 and a constant background; in
the strong-field limit (high nonlinear order n) this elim-
inates the need for field retrieval16. However, this comes
at the cost of a reduced nonlinear signal at the detector
(by a factor of up to 22n in the s→ 0 limit) as well as a
reduced contrast of the I1;0 signal with respect to the
constant background, making the I1;0 component more
susceptible to intensity fluctuations of the background
signal. On the other hand, even though a large balance
factor near unity provides the strongest nonlinear signal
and highest signal contrast, the phase contrast is reduced
with increasing s and vanishes completely for a perfectly
balanced IAC (s= 1). Therefore, there must exist an
optimum value for the balance factor s, which is shown in
Fig. 4e for n= 2 and n= 3 at different noise levels (the
result from the example in Fig. 4a–d is marked with a red
circle). The retrieval for each data point was repeated 10
times with different random noise signals to obtain the
statistical spread; only the intensity error is shown, since
the phase error exhibits comparable behavior. Notably,
the retrieval error for the noiseless case is independent of
s for n= 2 since the signal and phase contrast are
essentially infinite in this case (within the numerical
accuracy). The noiseless error for n= 3 increases slightly
with s, since higher-order cross-correlation components
have to be removed from the fundamental IAC peak to
obtain I1;0 (see Materials and Methods), which introduces
some error with increasing s, as the I1;0 signal becomes
buried by the higher-order components. For finite noise
values of σ= 10−3 and σ= 10−2, covering typical experi-
mental conditions, the retrieval error clearly shows a
minimum around s= 0.6 for n= 2 and s= 0.7 for n= 3,
implying that about 40–50% of the optical power can be
preserved in the attenuated pulse for optimum retrieval.
The usable range of balance factors for which the error is
not more than twice its minimum value is roughly
between s= 0.3 and s= 0.8 in all cases. The same range is
found for highly dispersed pulses that require multi-order
retrieval. The weak dependence of the retrieval quality on
the balance factor greatly relaxes the requirement to fine-
tune it for a particular experiment; and the possibility to
use relatively large balance factors, retaining most of the
IAC signal, makes the PENGUIN method suitable for a
wide variety of ultrafast optical field metrology applica-
tions. A detailed analysis of the retrieval performance in
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the presence of noise for highly dispersed pulses can be
found in the Supplementary Information (Section S3).

Experimental demonstration
In order to experimentally demonstrate and validate

the new PENGUIN technique, we performed a series of
unbalanced-intensity IAC measurements with a varying
balance factor s using ~2.5-nJ few-cycle Ti:sapphire
oscillator pulses and a 10 µm thin β-BaB2O4 (BBO)
crystal as a nonlinear medium for type-I SHG (n= 2).
The laser pulses were dispersion-minimized via chirped
mirrors and a wedge pair, leaving only uncompensated
nonlinear chirp. IAC scans were obtained with an actively
phase-stabilized Mach–Zehnder interferometer capable
of ~35-as root-mean-square stability of the optical delay
over a long scan range47; the balance factor was set by
adjusting a variable ND filter in one of the arms. The two
delayed pulses were then collinearly focused into the
BBO crystal, and the SHG radiation was separated from
the fundamental via a short-pass filter. We chose a 400-fs
delay range, which provides a reasonably high spectral
resolution after Fourier transformation (2.5 THz), as well
as a 0.2-fs step size for sub-cycle temporal resolution. By
using a spectrometer as a detector, the same experi-
mental setup is capable of recording an interferometric
FROG (IFROG) spectrogram according to Eq. (13) (see
Materials and Methods) when the two interferometer
arms are adjusted to the same power (s= 1); this serves as
a validation for the PENGUIN field retrieval method
(s < 1). To ensure identical experimental conditions for
the two different retrieval techniques, we used the same
spectrometer as a detector for all measurements. Inte-
grating the measured spectrograms over frequency is
equivalent to using a spectrally integrating detector,
which yields IAC traces suitable for the PENGUIN
retrieval algorithm.
For a proper comparison, both retrieval methods use an

identical nonlinear efficiency calibration of the measure-
ment system (see Materials and Methods). Here, we
applied a method commonly used in FROG to obtain the
nonlinear efficiency curve by comparing the frequency
marginal (i.e., the integral over delay time) of a conven-
tional (non-collinear) FROG spectrogram to the auto-
convolution of the independently measured fundamental
spectral intensity52. The conventional FROG spectrogram
is contained within the collinear IFROG measurement
and can be extracted by Fourier filtering and subtracting
the SHG spectrum36,37. The resulting nonlinear efficiency
curve is essentially flat because of the large phase-
matching bandwidth of the thin (10 µm) BBO crystal with
a slow roll-off above 800 THz (below 375 nm), and thus
has little impact on the field retrieval accuracy. Both
methods employ “blind” retrieval, i.e., using only the
measured spectrogram or IAC traces, respectively,

without any external constraints on the retrieved funda-
mental field or its spectrum.
Field retrieval from the IFROG measurement (s= 1)

was performed with a ptychographic retrieval algorithm
originally developed for conventional FROG53, which we
adapted for IFROG47. It provides fast convergence and
accurate results while being suitable for an unmodified
IFROG spectrogram without the need to separate or
filter its harmonic components36,37,39. Figure 5a shows
an excellent agreement between the measured (top) and
retrieved (bottom) IFROG spectrograms; the retrieved
field is depicted in red in Fig. 5c, d in the frequency and
time domains, respectively.
Figure 5b shows IAC measurements for different

balance factors s < 1 (dark blue) normalized to the DC
background signal, IIAC ±1ð Þ, after integrating the
respective spectrograms over frequency. The field was
retrieved according to the algorithm described in
Eqs. (4–6) but with the nonlinear efficiency curve applied
(see Materials and Methods), and the retrieved IAC traces
(orange) show an excellent match with the measurements.
In addition, the retrieval algorithm automatically recovers
the balance factor s and the linear spectral phase of the
IAC (i.e., the CEP difference between the two pulses and
the global time offset) by minimizing the IAC error after
each iteration. The CEP difference between the two pulses
can also be recovered from the balanced IFROG mea-
surement because of its interferometric nature. However,
the direction of time can only be revealed for s < 1 where a
non-trivial spectral phase is preserved. The fields retrieved
with the PENGUIN method for nine different measure-
ments with s= 0.21, 0.29, 0.41, 0.50, 0.56, 0.62, 0.67, 0.75,
and 0.84 are very close to each other and are therefore
represented as green bands bounding all nine measure-
ments in Fig. 5c, d in the frequency and time domains,
respectively. Balance values outside this range result in a
worse retrieval quality due to reduced signal contrast
(low s) or phase contrast (high s). All individual mea-
surements are shown in detail in the Supplementary
Information (Section S5). The small spread of the
retrieved field over a large range of balance factors con-
firms our simulation results in Fig. 4e and allows retaining
most of the optical power and signal contrast in the
experiment (e.g., for n= 2 and s= 0.84, the combined
two-pulse power is 85% and the signal contrast is 96%
compared to s= 1).
All retrieved fields using the PENGUIN method

(green) very closely match the retrieved field using
IFROG (red), which serves as an independent validation
of our novel technique. The nine PENGUIN measure-
ments within the green bands yield a mean full-width-at-
half-maximum (FWHM) duration of the temporal
intensity envelope of 6.45 ± 0.16 fs (the error denotes the
standard deviation within the nine measurements),

Gliserin et al. Light: Science & Applications          (2022) 11:277 Page 8 of 12



which is almost identical to the 6.44 fs FWHM duration
retrieved from the IFROG measurement (solid lines in
Fig. 5d). In addition, both retrieval methods are in good
agreement with the separately measured spectral mag-
nitude of the laser field (gray line in Fig. 5c). Small sys-
tematic deviations due to imperfect spectrometer
calibration (e.g., around 415 THz) affect both retrieval
methods in the same way, and the PENGUIN technique
appears to be more sensitive to narrow spectral features,
such as the peak around 475 THz.

Discussion and conclusions
We presented a novel optical field characterization

technique based on an unbalanced-intensity nonlinear
IAC, which preserves spectral phase information and
enables complete field retrieval with a rapid iterative
algorithm. Simulations show a wide usable range of bal-
ance factors, which is confirmed by experiments, as well
as a high robustness to noise for low-dispersion pulses.
We validated this new technique experimentally,
demonstrating that the retrieved electric field of few-
cycle broadband laser pulses is in excellent agreement
with the well-established FROG method.
The PENGUIN technique facilitates a substantial sim-

plification of scientific instruments for the characteriza-
tion of ultrafast optical fields, specifically the elimination

of a spectrometer as the main detector. A spectrally
integrating detector can also provide higher sensitivity
and dynamic range for weak signals compared to spec-
trally resolved devices. Almost any existing nonlinear
IAC setup is easy to modify for PENGUIN measure-
ments, either by inserting a ND filter in one of the arms
or by using beam splitters with different splitting ratios,
effectively converting it into a complete optical field
characterization device for most practical ultrashort laser
pulses similar to FROG or SPIDER but with significantly
less complexity and cost. The rapid field retrieval algo-
rithm allows live pulse shape monitoring when a fast
optical delay scan is employed, and the delay accuracy
can be maintained with a co-propagating continuous-
wave reference laser47 if necessary. Furthermore, single-
shot IAC acquisition with no moving parts is readily
available for Fourier-transform spectroscopy applications
using a Wollaston prism to map the autocorrelation delay
onto the transverse position on a linear photodetector
array54. PENGUIN can be implemented with this tech-
nique simply by changing the polarization of the input
beam with respect to the Wollaston prism and placing a
nonlinear medium at the line focus. A nonlinear photo-
detector (e.g., a large-bandgap photodiode or line detec-
tor) can be used instead of a separate nonlinear medium
to further simplify the setup.
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More importantly, the PENGUIN technique opens the
door for new and exciting scientific applications of ultra-
fast optical field metrology where the required nonlinear
interaction is inaccessible by spectroscopy, e.g., mapping
out ultrafast optical fields via non-radiative processes such
as plasmon-enhanced nonlinear photoemission from
metallic nanostructures45–49. In that regard, our new
approach provides a potential alternative to sub-cycle
sampling with attosecond pulses50,51.

Materials and methods
Extraction of the fundamental cross-correlation
component, I1,0, from the IAC
The I1;0 component can be directly recovered from the

IAC signal for n= 2 and s < 1 by spectral filtering around
the fundamental peak of the IAC and complex scaling,
since in that case it only contains the sum of I1;0 and its
complex conjugate scaled by s2 (i.e., I1;1 ¼ s2I1;0):

I1;0 ωð Þ ¼ F ωð Þ Re IIAC ωð Þ½ �
1þ s2

þ i
Im IIAC ωð Þ½ �

1� s2

	 

ð8Þ

with F(ω) being a suitable filter window to isolate the
fundamental peak around ω0 (e.g., dashed gray line in
Fig. 3a). For higher nonlinear orders n, the fundamental
IAC peak contains additional higher-order cross-correlation
components, i.e., I1;k>0 in Eq. (2), which are calculated
during the field retrieval using the current field guess and
subtracted from the IAC signal filtered around the
fundamental peak in order to iteratively recover the I1;0
signal. Since all higher-order fundamental cross-correlation
components are scaled by some power of s with respect to
the I1;0 signal, the error from approximating these
components quickly tends towards zero as Eq. (6) converges
towards the original fundamental field.

Retrieval error quantities
In order to quantify the retrieval error, we use nor-

malized mean absolute error values in the time domain.
For the IAC error, we define a normalized background-
free form of the IAC signal:

ÎIAC τð Þ ¼ IIAC τð Þ � s2n þ 1ð Þ Rþ1
�1 En tð Þj j2dt

sþ 1ð Þ2n�s2n � 1
� � Rþ1

�1 En tð Þj j2dt ð9Þ

where the delay-independent IAC background,

IIAC ±1ð Þ ¼ s2n þ 1ð Þ Rþ1
�1 En tð Þj j2dt, and the contrast

ratio, IIAC 0ð Þ=IIAC ±1ð Þ ¼ sþ 1ð Þ2n= s2n þ 1ð Þ, were used,
which follow from Eq. (1). The normalized form in Eq. (9)
is always unity at τ= 0 and approaches zero for τ→ ±∞,
allowing quantitative comparison independent of n and s.
The IAC error is then given by

εIAC ¼ 1
T

Z T
2

�T
2

ÎIAC;ret: τð Þ � ÎIAC;ref : τð Þ�� ��dτ ð10Þ

with ÎIAC;ret: and ÎIAC;ref : being the retrieved and reference
normalized IACs, respectively, and T the relevant temporal
extent of the measurement or simulation. Similarly, for a

normalized complex electric field of the form Ê tð Þ ¼
E tð Þj j=E0½ �exp iω0t þ iφ tð Þ½ � with a peak amplitude of E0

and temporal phase φ tð Þ ¼ arg E tð Þ½ � � ω0t, we define the
intensity and phase errors of the field as

ε Ej j2 ¼
1
T

Z T
2

�T
2

Êret: tð Þ
�� ��2� Êref : tð Þ

�� ��2��� ���dt ð11Þ

εφ ¼ 1
T

Z T
2

�T
2

φret: tð Þ � φref : tð Þj j Êref : tð Þ
�� ��2dt ð12Þ

Note that the phase error, εφ, is weighted by the
intensity profile of the reference field in order to make it
comparable to the other error quantities, which are
inherently weighted by the temporal distribution of the
respective signals.
The IAC signal is invariant with respect to the linear

spectral phase of the electric field, that is, its CEP and time
offset. Therefore, we perform a simple linear fit to adjust
these parameters of the retrieved field to match the linear
component of the spectral phase of the reference field
after each iteration in order to assess the retrieval quality
in the simulations.

Nonlinear spectral efficiency correction
All characterization methods for broadband optical

pulses are usually affected by a non-uniform spectral
efficiency of the nonlinear process and detector leading
to systematic errors in the measurement. Therefore, the
nonlinear efficiency curve of the measurement system
has to be determined and accounted for in the field
retrieval. Since the spectral efficiency is an intrinsic
property of the particular experiment, it can either be
calibrated externally prior to the measurement or
determined directly from the measurement by providing
the separately measured fundamental spectral intensity
as a constraint. The latter approach is typically used
with spectrally resolved field characterization methods
such as FROG and d-scan41,52,55 and is also available for
the spectrally integrating PENGUIN technique; this is
discussed in detail in the Supplementary Information
(Section S4).
Unlike a spectrogram, the spectrally integrated IAC

signal cannot be corrected for the nonlinear efficiency of
the measurement system before retrieving the electric
field. However, a known nonlinear efficiency curve can be
applied to the calculated cross-correlation components
and gating field used in the retrieval process enabling
correct field retrieval from an IAC signal affected by a
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non-uniform spectral efficiency. This generally requires
computing the spectrally resolved form of Eq. (1):

IIAC ω0; τð Þ ¼
Z þ1

�1
sE tð Þ þ E t � τð Þð Þne�iω0tdt

����
����
2

ð13Þ
Here, ω0 denotes the frequency domain after a Fourier
transform with respect to t at each delay step τ. For s= 1,
Eq. (13) describes the IFROG spectrogram36,37 (see
Fig. 5a). The binomial expansion of Eq. (13) contains
spectrogram components corresponding to their spec-
trally integrated counterparts in Eq. (1), all of which can
be easily scaled by a nonlinear efficiency filter, Cn ω0ð Þ.
Integrating Eq. (13) multiplied by Cn ω0ð Þ over ω0 yields the
one-dimensional IAC (or any of its cross-correlation
components) in the time domain as in Eq. (1) but with the
nonlinear efficiency curve applied. Note that the calcula-
tion of the full spectrogram increases the computational
effort by about a factor of N (N being the number of IAC
delay steps) compared to the field retrieval using only
one-dimensional quantities.
For field retrieval according to Eqs. (4–6) from the I1;0

component of an IAC that is affected by a nonlinear
efficiency curve, the gating field must be calculated with
the same nonlinear efficiency curve applied. This can be
done without computing a two-dimensional spectrogram,

because the gating field, EGð1;0Þ tð Þ ¼ E tð Þ En�1 tð Þj j2¼
En tð ÞEn�1 tð Þ, contains the nth-order harmonic field.
Applying the nonlinear efficiency curve to En tð Þ via

Fourier transform yields a filtered gating field, ~EGð1;0Þ tð Þ ¼
F�1 F En tð Þf gCn ω0ð Þf gEn�1 tð Þ, to be used in Eq. (6) for
retrieval. For n= 2, the I1;0 component is directly
extracted from the IAC via Eq. (8); thus, field retrieval can
be accomplished with the filtered gating field alone and
does not require computing spectrograms. For higher
nonlinear orders n, the I1;0 component has to be obtained
iteratively during the retrieval by subtracting higher-order
cross-correlation components from the IAC at the fun-
damental frequency. Applying the nonlinear efficiency
curve to these components with k > 0 requires calculating
their spectrograms using Eq. (13) which are then multi-
plied with Cn ω0ð Þ and integrated over frequency.
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